Skip to content

用户定义的函数

译者:flink.sojb.cn

用户定义的函数是一个重要的特性,因为它们显着扩展了查询的表达能力。

注册用户定义的函数

在大多数情况下,必须先注册用户定义的函数,然后才能在查询中使用它。没有必要为Scala Table API注册函数。

TableEnvironment通过调用registerFunction()方法来注册函数。注册用户定义的函数时,会将其插入到函数目录中TableEnvironment,以便 Table API或SQL解析器可以识别并正确转换它。

请找到如何注册,如何调用每个类型的用户定义函数(详细的例子ScalarFunctionTableFunctionAggregateFunction下面的子会话)。

标量函数

如果内置函数中不包含必需的标量函数,则可以为 Table API和SQL定义自定义的,用户定义的标量函数。用户定义的标量函数将零个,一个或多个标量值映射到新的标量值。

为了定义一个标量函数之一具有以扩展的基类ScalarFunctionorg.apache.flink.table.functions和实现(一个或多个)的评价方法。标量函数的行为由评估方法确定。评估方法必须公开声明并命名eval。评估方法的参数类型和返回类型也确定标量函数的参数和返回类型。通过实现多个名为的方法,也可以重载评估方法eval。评估方法也可以支持变量参数,例如eval(String... strs)

以下示例显示如何定义自己的哈希代码函数,在TableEnvironment中注册它,并在查询中调用它。请注意,您可以在注册之前通过构造函数配置标量函数:

public class HashCode extends ScalarFunction {
  private int factor = 12;

  public HashCode(int factor) {
      this.factor = factor;
  }

  public int eval(String s) {
      return s.hashCode() * factor;
  }
}

BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);

// register the function
tableEnv.registerFunction("hashCode", new HashCode(10));

// use the function in Java  Table API
myTable.select("string, string.hashCode(), hashCode(string)");

// use the function in SQL API
tableEnv.sqlQuery("SELECT string, HASHCODE(string) FROM MyTable");
// must be defined in static/object context class HashCode(factor: Int) extends ScalarFunction {
  def eval(s: String): Int = {
    s.hashCode() * factor
  }
}

val tableEnv = TableEnvironment.getTableEnvironment(env)

// use the function in Scala  Table API val hashCode = new HashCode(10)
myTable.select('string, hashCode('string))

// register and use the function in SQL tableEnv.registerFunction("hashCode", new HashCode(10))
tableEnv.sqlQuery("SELECT string, HASHCODE(string) FROM MyTable")

默认情况下,评估方法的结果类型由Flink的类型提取工具确定。这对于基本类型或简单POJO就足够了,但对于更复杂,自定义或复合类型可能是错误的。在这些情况下TypeInformation,可以通过覆盖手动定义结果类型ScalarFunction#getResultType()

以下示例显示了一个高级示例,该示例采用内部时间戳表示形式,并将内部时间戳表示形式返回为long值。通过重写,ScalarFunction#getResultType()我们定义返回的long值应该Types.TIMESTAMP由代码生成解释为a 。

public static class TimestampModifier extends ScalarFunction {
  public long eval(long t) {
    return t % 1000;
  }

  public TypeInformation<?> getResultType(signature: Class<?>[]) {
    return Types.TIMESTAMP;
  }
}
object TimestampModifier extends ScalarFunction {
  def eval(t: Long): Long = {
    t % 1000
  }

  override def getResultType(signature: Array[Class[_]]): TypeInformation[_] = {
    Types.TIMESTAMP
  }
}

表函数

与用户定义的标量函数类似,用户定义的表函数将零个,一个或多个标量值作为输入参数。但是,与标量函数相比,它可以返回任意数量的行作为输出而不是单个值。返回的行可以包含一个或多个列。

为了定义表函数之一具有以扩展的基类TableFunctionorg.apache.flink.table.functions和实现(一个或多个)的评价方法。表函数的行为由其评估方法确定。必须声明public和命名评估方法eval。该TableFunction可以通过实施名为多种方法被重载eval。评估方法的参数类型确定表函数的所有有效参数。评估方法也可以支持变量参数,例如eval(String... strs)。返回表的类型由泛型类型确定TableFunction。评估方法使用受保护的方法发出输出行collect(T)

在该 Table API,表格函数用于.join(Expression).leftOuterJoin(Expression)Scala用户和.join(String).leftOuterJoin(String)针对Java用户。的join 算子(交叉)关联其中,从外部表与由表值函数(其是在 算子操作者的右侧)所产生的所有行的每行(表上的 算子操作者的左侧)。的leftOuterJoin 算子连接从外部表(在 算子左侧表)与由表值函数(其是在 算子操作者的右侧)所产生的所有行的每一行,并保存的量,表函数返回一个外部行空表。在SQL中使用LATERAL TABLE(&lt;TableFunction&gt;)CROSS JOIN和LEFT JOIN以及ON TRUE连接条件(参见下面的示例)。

以下示例显示如何定义表值函数,在TableEnvironment中注册它,并在查询中调用它。请注意,您可以在注册之前通过构造函数配置表函数:

// The generic type "Tuple2<String, Integer>" determines the schema of the returned table as (String, Integer).
public class Split extends TableFunction<Tuple2<String, Integer>> {
    private String separator = " ";

    public Split(String separator) {
        this.separator = separator;
    }

    public void eval(String str) {
        for (String s : str.split(separator)) {
            // use collect(...) to emit a row
            collect(new Tuple2<String, Integer>(s, s.length()));
        }
    }
}

BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);
Table myTable = ...         // table schema: [a: String]

// Register the function.
tableEnv.registerFunction("split", new Split("#"));

// Use the table function in the Java  Table API. "as" specifies the field names of the table.
myTable.join("split(a) as (word, length)").select("a, word, length");
myTable.leftOuterJoin("split(a) as (word, length)").select("a, word, length");

// Use the table function in SQL with LATERAL and TABLE keywords.
// CROSS JOIN a table function (equivalent to "join" in  Table API).
tableEnv.sqlQuery("SELECT a, word, length FROM MyTable, LATERAL TABLE(split(a)) as T(word, length)");
// LEFT JOIN a table function (equivalent to "leftOuterJoin" in  Table API).
tableEnv.sqlQuery("SELECT a, word, length FROM MyTable LEFT JOIN LATERAL TABLE(split(a)) as T(word, length) ON TRUE");
// The generic type "(String, Int)" determines the schema of the returned table as (String, Integer). class Split(separator: String) extends TableFunction[(String, Int)] {
  def eval(str: String): Unit = {
    // use collect(...) to emit a row.
    str.split(separator).foreach(x -> collect((x, x.length))
  }
}

val tableEnv = TableEnvironment.getTableEnvironment(env)
val myTable = ...         // table schema: [a: String] 
// Use the table function in the Scala  Table API (Note: No registration required in Scala  Table API). val split = new Split("#")
// "as" specifies the field names of the generated table. myTable.join(split('a) as ('word, 'length)).select('a, 'word, 'length)
myTable.leftOuterJoin(split('a) as ('word, 'length)).select('a, 'word, 'length)

// Register the table function to use it in SQL queries. tableEnv.registerFunction("split", new Split("#"))

// Use the table function in SQL with LATERAL and TABLE keywords.
// CROSS JOIN a table function (equivalent to "join" in  Table API) tableEnv.sqlQuery("SELECT a, word, length FROM MyTable, LATERAL TABLE(split(a)) as T(word, length)")
// LEFT JOIN a table function (equivalent to "leftOuterJoin" in  Table API) tableEnv.sqlQuery("SELECT a, word, length FROM MyTable LEFT JOIN TABLE(split(a)) as T(word, length) ON TRUE")

IMPORTANT: Do not implement TableFunction as a Scala object. Scala object is a singleton and will cause concurrency issues.

请注意,POJO类型没有确定性字段顺序。因此,您无法重命名由表函数返回的POJO字段AS

默认情况下,a的结果类型TableFunction由Flink的自动类型提取工具确定。这适用于基本类型和简单POJO,但对于更复杂,自定义或复合类型可能是错误的。在这种情况下,结果的类型可以通过覆盖TableFunction#getResultType()返回它来手动指定TypeInformation

以下示例显示了一个TableFunction返回Row需要显式类型信息的类型的示例。我们定义返回的表类型应该RowTypeInfo(String, Integer)通过重写TableFunction#getResultType()

public class CustomTypeSplit extends TableFunction<Row> {
    public void eval(String str) {
        for (String s : str.split(" ")) {
            Row row = new Row(2);
            row.setField(0, s);
            row.setField(1, s.length);
            collect(row);
        }
    }

    @Override
    public TypeInformation<Row> getResultType() {
        return Types.ROW(Types.STRING(), Types.INT());
    }
}
class CustomTypeSplit extends TableFunction[Row] {
  def eval(str: String): Unit = {
    str.split(" ").foreach({ s =>
      val row = new Row(2)
      row.setField(0, s)
      row.setField(1, s.length)
      collect(row)
    })
  }

  override def getResultType: TypeInformation[Row] = {
    Types.ROW(Types.STRING, Types.INT)
  }
}

聚合函数

用户定义的聚合函数(UDAGG)将一个表(一个或多个具有一个或多个属性的行)聚合到标量值。

UDAGG机制

上图显示了聚合的示例。假设您有一个包含饮料数据的表格。该表由三列的idnameprice5行。想象一下,您需要找到表中所有饮料的最高价格,即执行max()聚合。您需要检查5行中的每一行,结果将是单个数值。

用户定义的聚合函数通过扩展AggregateFunction类来实现。一个AggregateFunction作品如下。首先,它需要一个accumulator,它是保存聚合的中间结果的数据结构。通过调用createAccumulator()方法创建一个空累加器AggregateFunction。随后,accumulate()为每个输入行调用函数的方法以更新累加器。处理完所有行后,将getValue()调用该函数的方法来计算并返回最终结果。

每种方法都必须使用以下方法AggregateFunction

  • createAccumulator()
  • accumulate()
  • getValue()

Flink的类型提取工具无法识别复杂的数据类型,例如,如果它们不是基本类型或简单的POJO。类似于ScalarFunctionTableFunctionAggregateFunction提供了指定TypeInformation结果类型(通过 AggregateFunction#getResultType())和累加器类型(通过AggregateFunction#getAccumulatorType())的方法。

除了上述方法之外,还有一些可以选择性实施的简约方法。虽然其中一些方法允许系统更有效地执行查询,但其他方法对于某些用例是强制性的。例如,merge()如果聚合函数应该应用于会话组窗口的上下文中,则该方法是必需的(当观察到“连接”它们的行时,需要连接两个会话窗口的累加器)。

AggregateFunction根据用例,Required以下方法:

  • retract()有界OVER窗口上的聚合需要。
  • merge() 是许多批量聚合和会话窗口聚合所必需的。
  • resetAccumulator() 是许多批量聚合所必需的。

所有方法AggregateFunction必须声明为public,而不是static完全按照上面提到的名称命名。该方法createAccumulatorgetValuegetResultType,和getAccumulatorType在定义的AggregateFunction抽象类,而另一些则收缩的方法。为了定义聚合函数,必须扩展基类org.apache.flink.table.functions.AggregateFunction并实现一个(或多个)accumulate方法。该方法accumulate可以使用不同的参数类型重载,并支持可变参数。

AggregateFunction下面给出了所有方法的详细文档。

/**
  * Base class for aggregation functions.
  *
  * @param <T>   the type of the aggregation result
  * @param <ACC> the type of the aggregation accumulator. The accumulator is used to keep the
  *             aggregated values which are needed to compute an aggregation result.
  *             AggregateFunction represents its state using accumulator, thereby the state of the
  *             AggregateFunction must be put into the accumulator.
  */
public abstract class AggregateFunction<T, ACC> extends UserDefinedFunction {

  /**
    * Creates and init the Accumulator for this [[AggregateFunction]].
    *
    * @return the accumulator with the initial value
    */
  public ACC createAccumulator(); // MANDATORY

  /** Processes the input values and update the provided accumulator instance. The method
    * accumulate can be overloaded with different custom types and arguments. An AggregateFunction
    * requires at least one accumulate() method.
    *
    * @param accumulator           the accumulator which contains the current aggregated results
    * @param [user defined inputs] the input value (usually obtained from a new arrived data).
    */
  public void accumulate(ACC accumulator, [user defined inputs]); // MANDATORY

  /**
    * Retracts the input values from the accumulator instance. The current design assumes the
    * inputs are the values that have been previously accumulated. The method retract can be
    * overloaded with different custom types and arguments. This function must be implemented for
    * datastream bounded over aggregate.
    *
    * @param accumulator           the accumulator which contains the current aggregated results
    * @param [user defined inputs] the input value (usually obtained from a new arrived data).
    */
  public void retract(ACC accumulator, [user defined inputs]); // OPTIONAL

  /**
    * Merges a group of accumulator instances into one accumulator instance. This function must be
    * implemented for datastream session window grouping aggregate and dataset grouping aggregate.
    *
    * @param accumulator  the accumulator which will keep the merged aggregate results. It should
    *                     be noted that the accumulator may contain the previous aggregated
    *                     results. Therefore user should not replace or clean this instance in the
    *                     custom merge method.
    * @param its          an [[java.lang.Iterable]] pointed to a group of accumulators that will be
    *                     merged.
    */
  public void merge(ACC accumulator, java.lang.Iterable<ACC> its); // OPTIONAL

  /**
    * Called every time when an aggregation result should be materialized.
    * The returned value could be either an early and incomplete result
    * (periodically emitted as data arrive) or the final result of the
    * aggregation.
    *
    * @param accumulator the accumulator which contains the current
    *                    aggregated results
    * @return the aggregation result
    */
  public T getValue(ACC accumulator); // MANDATORY

  /**
    * Resets the accumulator for this [[AggregateFunction]]. This function must be implemented for
    * dataset grouping aggregate.
    *
    * @param accumulator  the accumulator which needs to be reset
    */
  public void resetAccumulator(ACC accumulator); // OPTIONAL

  /**
    * Returns true if this AggregateFunction can only be applied in an OVER window.
    *
    * @return true if the AggregateFunction requires an OVER window, false otherwise.
    */
  public Boolean requiresOver = false; // PRE-DEFINED

  /**
    * Returns the TypeInformation of the AggregateFunction's result.
    *
    * @return The TypeInformation of the AggregateFunction's result or null if the result type
    *         should be automatically inferred.
    */
  public TypeInformation<T> getResultType = null; // PRE-DEFINED

  /**
    * Returns the TypeInformation of the AggregateFunction's accumulator.
    *
    * @return The TypeInformation of the AggregateFunction's accumulator or null if the
    *         accumulator type should be automatically inferred.
    */
  public TypeInformation<T> getAccumulatorType = null; // PRE-DEFINED
}
/**
  * Base class for aggregation functions.
  *
  * @tparam T   the type of the aggregation result
  * @tparam ACC the type of the aggregation accumulator. The accumulator is used to keep the
  *             aggregated values which are needed to compute an aggregation result.
  *             AggregateFunction represents its state using accumulator, thereby the state of the
  *             AggregateFunction must be put into the accumulator.
  */
abstract class AggregateFunction[T, ACC] extends UserDefinedFunction {
  /**
    * Creates and init the Accumulator for this [[AggregateFunction]].
    *
    * @return the accumulator with the initial value
    */
  def createAccumulator(): ACC // MANDATORY 
  /**
    * Processes the input values and update the provided accumulator instance. The method
    * accumulate can be overloaded with different custom types and arguments. An AggregateFunction
    * requires at least one accumulate() method.
    *
    * @param accumulator           the accumulator which contains the current aggregated results
    * @param [user defined inputs] the input value (usually obtained from a new arrived data).
    */
  def accumulate(accumulator: ACC, [user defined inputs]): Unit // MANDATORY 
  /**
    * Retracts the input values from the accumulator instance. The current design assumes the
    * inputs are the values that have been previously accumulated. The method retract can be
    * overloaded with different custom types and arguments. This function must be implemented for
    * datastream bounded over aggregate.
    *
    * @param accumulator           the accumulator which contains the current aggregated results
    * @param [user defined inputs] the input value (usually obtained from a new arrived data).
    */
  def retract(accumulator: ACC, [user defined inputs]): Unit // OPTIONAL 
  /**
    * Merges a group of accumulator instances into one accumulator instance. This function must be
    * implemented for datastream session window grouping aggregate and dataset grouping aggregate.
    *
    * @param accumulator  the accumulator which will keep the merged aggregate results. It should
    *                     be noted that the accumulator may contain the previous aggregated
    *                     results. Therefore user should not replace or clean this instance in the
    *                     custom merge method.
    * @param its          an [[java.lang.Iterable]] pointed to a group of accumulators that will be
    *                     merged.
    */
  def merge(accumulator: ACC, its: java.lang.Iterable[ACC]): Unit // OPTIONAL 
  /**
    * Called every time when an aggregation result should be materialized.
    * The returned value could be either an early and incomplete result
    * (periodically emitted as data arrive) or the final result of the
    * aggregation.
    *
    * @param accumulator the accumulator which contains the current
    *                    aggregated results
    * @return the aggregation result
    */
  def getValue(accumulator: ACC): T // MANDATORY 
  h/**
    * Resets the accumulator for this [[AggregateFunction]]. This function must be implemented for
    * dataset grouping aggregate.
    *
    * @param accumulator  the accumulator which needs to be reset
    */
  def resetAccumulator(accumulator: ACC): Unit // OPTIONAL 
  /**
    * Returns true if this AggregateFunction can only be applied in an OVER window.
    *
    * @return true if the AggregateFunction requires an OVER window, false otherwise.
    */
  def requiresOver: Boolean = false // PRE-DEFINED 
  /**
    * Returns the TypeInformation of the AggregateFunction's result.
    *
    * @return The TypeInformation of the AggregateFunction's result or null if the result type
    *         should be automatically inferred.
    */
  def getResultType: TypeInformation[T] = null // PRE-DEFINED 
  /**
    * Returns the TypeInformation of the AggregateFunction's accumulator.
    *
    * @return The TypeInformation of the AggregateFunction's accumulator or null if the
    *         accumulator type should be automatically inferred.
    */
  def getAccumulatorType: TypeInformation[ACC] = null // PRE-DEFINED }

以下示例说明如何 算子操作

  • 定义一个AggregateFunction计算给定列的加权平均值,
  • TableEnvironment和中注册函数
  • 在查询中使用该函数。

为了计算加权平均值,累加器需要存储已累积的所有数据的加权和和计数。在我们的示例中,我们将一个类定义为WeightedAvgAccum累加器。Flink的检查点机制自动备份累加器,并在无法确保一次性语义的情况下进行恢复。

accumulate()我们的方法WeightedAvg AggregateFunction有三个输入。第一个是WeightedAvgAccum累加器,另外两个是用户定义的输入:输入值ivalue和输入的权重iweight。虽然retract()merge()resetAccumulator()方法不是强制性的最聚集的类型,我们提供以下举例它们。请注意,我们使用Java基本类型和定义getResultType(),并getAccumulatorType()在Scala例如方法,因为Flink类型提取不Scala类型的工作非常好。

/**
 * Accumulator for WeightedAvg.
 */
public static class WeightedAvgAccum {
    public long sum = 0;
    public int count = 0;
}

/**
 * Weighted Average user-defined aggregate function.
 */
public static class WeightedAvg extends AggregateFunction<Long, WeightedAvgAccum> {

    @Override
    public WeightedAvgAccum createAccumulator() {
        return new WeightedAvgAccum();
    }

    @Override
    public Long getValue(WeightedAvgAccum acc) {
        if (acc.count == 0) {
            return null;
        } else {
            return acc.sum / acc.count;
        }
    }

    public void accumulate(WeightedAvgAccum acc, long iValue, int iWeight) {
        acc.sum += iValue * iWeight;
        acc.count += iWeight;
    }

    public void retract(WeightedAvgAccum acc, long iValue, int iWeight) {
        acc.sum -= iValue * iWeight;
        acc.count -= iWeight;
    }

    public void merge(WeightedAvgAccum acc, Iterable<WeightedAvgAccum> it) {
        Iterator<WeightedAvgAccum> iter = it.iterator();
        while (iter.hasNext()) {
            WeightedAvgAccum a = iter.next();
            acc.count += a.count;
            acc.sum += a.sum;
        }
    }

    public void resetAccumulator(WeightedAvgAccum acc) {
        acc.count = 0;
        acc.sum = 0L;
    }
}

// register function
StreamTableEnvironment tEnv = ...
tEnv.registerFunction("wAvg", new WeightedAvg());

// use function
tEnv.sqlQuery("SELECT user, wAvg(points, level) AS avgPoints FROM userScores GROUP BY user");
import java.lang.{Long => JLong, Integer => JInteger}
import org.apache.flink.api.java.tuple.{Tuple1 => JTuple1}
import org.apache.flink.api.java.typeutils.TupleTypeInfo
import org.apache.flink.table.api.Types
import org.apache.flink.table.functions.AggregateFunction

/**
 * Accumulator for WeightedAvg.
 */
class WeightedAvgAccum extends JTuple1[JLong, JInteger] {
  sum = 0L
  count = 0
}

/**
 * Weighted Average user-defined aggregate function.
 */
class WeightedAvg extends AggregateFunction[JLong, CountAccumulator] {

  override def createAccumulator(): WeightedAvgAccum = {
    new WeightedAvgAccum
  }

  override def getValue(acc: WeightedAvgAccum): JLong = {
    if (acc.count == 0) {
        null
    } else {
        acc.sum / acc.count
    }
  }

  def accumulate(acc: WeightedAvgAccum, iValue: JLong, iWeight: JInteger): Unit = {
    acc.sum += iValue * iWeight
    acc.count += iWeight
  }

  def retract(acc: WeightedAvgAccum, iValue: JLong, iWeight: JInteger): Unit = {
    acc.sum -= iValue * iWeight
    acc.count -= iWeight
  }

  def merge(acc: WeightedAvgAccum, it: java.lang.Iterable[WeightedAvgAccum]): Unit = {
    val iter = it.iterator()
    while (iter.hasNext) {
      val a = iter.next()
      acc.count += a.count
      acc.sum += a.sum
    }
  }

  def resetAccumulator(acc: WeightedAvgAccum): Unit = {
    acc.count = 0
    acc.sum = 0L
  }

  override def getAccumulatorType: TypeInformation[WeightedAvgAccum] = {
    new TupleTypeInfo(classOf[WeightedAvgAccum], Types.LONG, Types.INT)
  }

  override def getResultType: TypeInformation[JLong] = Types.LONG
}

// register function val tEnv: StreamTableEnvironment = ???
tEnv.registerFunction("wAvg", new WeightedAvg())

// use function tEnv.sqlQuery("SELECT user, wAvg(points, level) AS avgPoints FROM userScores GROUP BY user")

实施UDF的最佳实践

Table API和SQL代码生成在内部尝试尽可能地使用原始值。用户定义的函数可以通过对象创建,转换和(un)装箱引入很多开销。因此,强烈建议将参数和结果类型声明为基本类型而不是它们的盒装类。Types.DATE并且Types.TIME也可以表示为intTypes.TIMESTAMP可以表示为long

我们建议用户定义的函数应该由Java而不是Scala编写,因为Scala类型对Flink的类型提取器构成了挑战。

将UDF与运行时集成

有时,用户定义的函数可能需要获取全局运行时信息,或者在实际工作之前进行一些设置/清理工作。用户定义的函数提供open()close()方法可以被覆盖,并提供与RichFunctionDataSet或DataStream API中的方法类似的函数。

open()在评估方法之前调用该方法一次。在close()该评价方法最后一次通话之后方法。

open()方法提供FunctionContext包含关于执行用户定义的函数的上下文的信息,例如度量标准组,分布式缓存文件或全局作业参数。

通过调用以下相应的方法可以获得以下信息FunctionContext

方法 描述
getMetricGroup() 此并行子任务的度量标准组。
getCachedFile(name) 分布式缓存文件的本地临时文件副本。
getJobParameter(name, defaultValue) 与给定键关联的全局作业参数值。

以下示例代码段显示了如何FunctionContext在标量函数中使用以访问全局作业参数:

public class HashCode extends ScalarFunction {

    private int factor = 0;

    @Override
    public void open(FunctionContext context) throws Exception {
        // access "hashcode_factor" parameter
        // "12" would be the default value if parameter does not exist
        factor = Integer.valueOf(context.getJobParameter("hashcode_factor", "12"));
    }

    public int eval(String s) {
        return s.hashCode() * factor;
    }
}

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);

// set job parameter
Configuration conf = new Configuration();
conf.setString("hashcode_factor", "31");
env.getConfig().setGlobalJobParameters(conf);

// register the function
tableEnv.registerFunction("hashCode", new HashCode());

// use the function in Java  Table API
myTable.select("string, string.hashCode(), hashCode(string)");

// use the function in SQL
tableEnv.sqlQuery("SELECT string, HASHCODE(string) FROM MyTable");
object hashCode extends ScalarFunction {

  var hashcode_factor = 12

  override def open(context: FunctionContext): Unit = {
    // access "hashcode_factor" parameter
    // "12" would be the default value if parameter does not exist
    hashcode_factor = context.getJobParameter("hashcode_factor", "12").toInt
  }

  def eval(s: String): Int = {
    s.hashCode() * hashcode_factor
  }
}

val tableEnv = TableEnvironment.getTableEnvironment(env)

// use the function in Scala  Table API myTable.select('string, hashCode('string))

// register and use the function in SQL tableEnv.registerFunction("hashCode", hashCode)
tableEnv.sqlQuery("SELECT string, HASHCODE(string) FROM MyTable")


回到顶部